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https://www.youtube.com/watch?v=UOb5a2DydmI
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Today

Simultaneous Localization and Mapping

“Holy grail of mobile robotics”

» Over 30 years of robotic research

Simultaneous Localisation and Mapping (SLAM):
Part I The Essential Algorithms

Hugh Durrant-Whyte, Fellow, IEEE, and Tim Bailey

Abstract— This tutorial provides an introduction to Simul-
Localisation and M (SLAM) and the exten-

sive research on SLAM that has been undertaken over the
past decade. SLAM is the process by which a mobile robot

can build a map of an environment and at the same time
use this map to P it’s own locati The past decad

has seen rapid and exciting progress in solvmg the SLAM
problem together with many pelling 1 of
SLAM methods. Part I of this tutorial (this paper), de-
scribes thf- probnbllmtlc form nf the QLAM pmhlem, essen-
tial sol s and si Part.
1I of this tutorial will be concerned with recent advances in
computational methods and new formulations of the SLAM

this tutorial. Section V describes a number of important
real-world implementations of SLAM and also highlights
implementalions where the sensor data and software are
frecly down-loadable for other rescarchers to study. Part
II of this tutorial describes major issues in computation,
convergence and data association in SLAM. These are sub-
jects that have been the main focus of the SLAM research
community over the past five years.

Past, Present, and Future of Simultaneous
Localization And Mapping: Towards the
Robust-Perception Age

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, José Neira, lan Reid, John J. Leonard

Abstract—Simult: Localization And Mapping (SLAM)
consists in the concurrent construction of a model of the
environment (the map), and the estimation of the state of the robot
moving within it. The SLAM ity has made ishi
pmymmumelnwmzmhunghmbmklulwaﬁ
applicatis a steady transition of this

I. INTRODUCTION

LAM prises the si of the state
of a robot equipped with on-board sensors, and the con-
struction of a model (the map) of the environment that the

“The genesis of the probabilistic SLAM problem occurred at the 1986 IEEE Robotics and Automation Con-
ference held in San Francisco. This was a time when probabilistic methods were only just beginning to be
introduced into both robotics and Al. A number of researchers had been looking at applying estimation-
theoretic methods to mapping and localisation problems; these included Peter Cheeseman, Jim Crowley,
and Hugh Durrant-Whyte. Over the course of the conference many paper table cloths and napkins were filled
with long discussions about consistent mapping. Along the way, Raja Chatila, Oliver Faugeras, Randal Smith
and others also made useful contributions to the conversation.”
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“Map”: Environment

Representations

e Sparse:
e | andmark-based
e No explicit
representation
(pose graph)
e (Geometric
primitives
e Dense:
e Point clouds
e 2D/3D occupancy
grids
e 3D meshes

courtesy of octomap

courtesy of Nicholson et al.
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Simultaneous Localization and Mapping

Pose Graph Optimization
(a.k.a. pose SLAM):
Estimate only trajectory from
sensor data

14

Landmark-based SLAM:
Estimate trajectory of robot
and position of external
landmarks from sensor
data




Pose Graph Optimization
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 Measurements: odometry + loop closures (i.e., relative pose
measurements between non-consecutive poses obtained via place
recognition & 2-view geometry, or similar)

- Variables: robot poses Q’AERO




Graphical representation of pose graph optimization

(R52,: D52)
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Pose Graph Optimization: Sparsity
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Graphical representation of pose graph optimization

Labelled graph
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Pose Graph Optimization: Example

https://www.youtube.com/watch?v=KYvOgUB odg



https://www.youtube.com/watch?v=KYvOqUB_odg
https://www.youtube.com/watch?v=KYvOqUB_odg

Landmark-based SLLAM

» Sequence of robot (camera) poses T',T5, ..., T; € SE(d)

» Robot measures the relative pose between T; and T, (odometry)

» Robot measures the environment (e.g., point landmarks p, € R

Odometry measurement
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courtesy of Michael Kaess

« Measurements: odometry + measurements of (projection,
range, position, or others) of external landmarks
« Variables: robot poses and landmark positions
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Graphical representation of landmark-based SLAM

Odometry measurement
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» Each variable (robot pose, landmark position/pose) is a node in the graph

» Each (usually) pairwise measurement denotes an edge between the
corresponding two variables (nodes)




Graphical representation of landmark-based SLAM
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Some terminology

sensor SLAM
front-end back-end  oqtimate

: data association:
- short-term (feature tracklng)
- long-term (loop closure)

MAP is maximum a posteriori estimation
(MLE if no prior is available [“uninformative” prior])

courtesy of Cadenaet al.
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Backup



Windowed Bundle Adjustment
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Windowed Bundle Adjustment

Jacobian J Hessian JTJ
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Windowed Bundle Adjustment
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T,, — measured pose between T; and T,

T, = T;'T;exp(e;) wheree;; ~ N(0,%;;)

I|rij||2fjl where r;; = logsg(s) (T; ' TiT,;) = —logsgs) (T, 'T; 'T;)

Other noise models (and thus residual/MLE formulations) also exist and
are commonly used — we’'ll see one next week

e.g., Langevin noise for rotational measurements and additive Gaussian
noise for translational measurements (i.e., similar to odometry
measurement residuals in Lab 9 individual deliverable)

e.g., another commonly used model uses wrapped Gaussian on rotational
measurements (SO(3)) and additive Gaussian on translational
measurements
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Loop Closure




On board?

Typical Back-End (MLE)

fx) =) Iz Bhy(x)|3

(iJ)eE

» %,,...,%, — robot poses, landmark positions, ...
» z;; — actual measurement

» h;; — measurement model

» X;; — noise covariance matrix

» z;; B h;;(x;,x;) — residual (error)

» B — “generalized —”
would be defined differently based on the specific
measurement model



Typical Back-End (MAP)

fx)= > |z B hz'j(XuX‘/)H;;jl +Y B Sz'||;i—1

(i,J)eFE ¢ potential priors for x; at s;

» %,,...,%, — robot poses, landmark positions, ...
» z;; — actual measurement

» h;; — measurement model

» X;; — noise covariance matrix

» z;; Hh;;(x;,x;) — residual (error)

» H — “generalized —”
would be defined differently based on the specific
measurement model



